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In recent years, several projects have advanced research and

development related to the automation of the protein

crystallization process. However, evaluation of crystallization

states has not yet been completely automated. In the usual

crystallization process, researchers evaluate the protein

crystallization growth states based on visual impressions and

assign them a score over and over again. The method

presented here automates this evaluation process. This

method attempts to categorize the individual crystallization

droplet images into five classes. The algorithm is comprised of

pre-processing, feature extraction from images using texture

analysis and a categorization process using linear discriminant

analysis. The performance of this method has been evaluated

by comparing the results obtained by using this method with

the results from a human expert and the concordance rate was

90.6%.
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1. Introduction

High-throughput protein structure determination has been

advanced by many projects (e.g. Abola et al., 2000) and the

necessary time for determining protein structure has been

greatly reduced. In contrast, although the crystallization

process is the first requisite for protein structural determina-

tion by X-ray crystal structure analysis, it still requires a great

deal of time. Therefore, there have been several attempts

to achieve high-throughput crystallization; for example,

Hauptman–Woodward Medical Research Institute Inc. have

developed a robotic system which sets up 40 000 crystal-

lization conditions per day and an image-processing system

which images 28 plates (1536-well) in 10 h and Stevens (2000)

has developed another robotic system which screens 10–

100 000 crystallization conditions per day. RIKEN (The

Institute of Physical and Chemical Research) in Japan also has

been developing a robotic system to automate the process of

crystallization. The details of the system will be described

in x2.

Through the development of such robotic systems, the

efficiency of crystallization work has seen rapid improvements.

However, the systems have mainly realised the automation of

setup and storage of the crystallization samples and the

observation process has not yet been completely automated.

The researchers therefore have to keep the samples under

observation.

In previous work, methods related to automation of the

evaluation of the crystallization droplet have been proposed.

For example, Bodenstaff et al. (2002) and Echalier et al. (2004)

used a rotating-polarizing filter to detect crystals in protein

crystallization droplets containing precipitate. Their proces-

sing targets are not images but are the droplets themselves.

Crystallization images have been used by Cumbaa et al.



(2003), who used the Radon transform to extract straight-edge

features, Zuk & Ward (1991), who used the Hough transform

to identify crystal edges, Rupp (2003), who used phase

congruency to detect a large number of small crystals, and

Gester et al. (2003), who automated counting the number of

crystals to generate three-dimensional surface plots of the

crystals and to determine crystal size based on the length of

the perimeter of the crystals. All these methods put the

emphasis on discriminating between the presence and absence

of crystals. However, in addition to detecting crystals, it is also

very important and valuable to observe and evaluate the

crystallization growth states from start to finish.

Various methods for evaluating crystallization growth states

have been proposed. Spraggon et al. (2002) used texture

analysis and a self-organizing neural network to categorize

individual crystal trials into six classes (0, experimental

mistake; 1, clear drop; 2, homogenous precipitant; 3, inho-

mogenous precipitant; 4, microcrystals; 5, mountable crystals).

Bern et al. (2004) used the Hough transform and curve

tracking and classified into the classes 0, empty; 1, clear; 2,

precipitate; 3, microcrystal; 4, crystal. Jurisica et al. (2001) used

a two-dimensional Fourier transform and classified into classes

0, clear; 1, amorphous precipitate; 2, phase separation; 3,

microcrystals; 4, crystals. Adams et al. (2002) extracted 11

features from images acquired by the RoboMicroscope II

system and classified the droplets into four classes (0, clear; 1,

precipitate; 2, crystals; 3, other). Wilson (2002) categorized the

objects in the crystallization droplets into three classes (0,

single crystals, overlapping crystals and clusters; 1, promising

conditions such as interesting precipi-

tate or microcrystals; 2, objects arising

from skin on the drop as well as various

lighting effects and other unfavourable

outcomes) based on their size, shape,

curvature of the boundary and variance

in intensity etc.

We consider that there are two

reasons why it is not easy to automate

such observation processes. One is that

there is no definition of the detailed

criteria for the evaluation. The other is

that it is unpredictable how the crys-

tallization samples grow. In this article,

we attempt to evaluate the incipient

growth states of protein crystallization

using image processing and statistical

analysis and aim to achieve a categor-

izing accuracy of more than 80% in

individual classes, whereas the evalua-

tion accuracies in each class are not

stabilized in the above-mentioned

methods. To be specific, we extract

texture information from greyscale

crystallization images and derive

numerical evaluation criteria using

evaluation scores assigned by an

expert’s empirical knowledge.

2. Methods

2.1. Image acquisition

Protein crystallization images vary depending on the crys-

tallization techniques and imaging devices. Fig. 1 shows some

example images taken with the above-mentioned TERA

crystallization system developed by RIKEN that were used in

this article. The system employs the microbatch method as the

crystallization technique and has already provided the

following capabilities.

(i) Dispensing the crystallization reagents for the micro-

batch method (total drop size is 16 ml: 0.5 ml protein, 0.5 ml

precipitant and 15 ml oil).

(ii) Taking images of each drop on an xyz stage using an

inverted microscope from Olympus with a cooling CCD

camera from Roper Scientific.

(iii) Supervising 2560 crystallization plates and 125 reagent

plates (72-well plate).

(iv) Handling the plates between the appliances with

manipulators.

The acquisition image size is 1392 � 1040 pixels and the pixel

size is 4.65 � 4.65 mm.

2.2. Classification

The growth states of protein crystallization can take many

forms; for example, precipitate, amorphous agglutinate, crys-

tals with varied shapes and combinations of these. In order to

respond to these variations, RIKEN sets the ten standard
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Figure 1
Examples of drop images taken with the TERA system. The size is 1392� 1040 pixels and the well is
visible somewhere in the centre. (a) Clear, (b) precipitate, (c) amorphous grain and (d) crystal.



categories for evaluation as shown in Fig. 2. A brief descrip-

tion of each category is given below.

0, Clear drop.

1, Precipitate (i): creamy and grainless precipitate.

2, Precipitate (ii): fine or granulated sugar-like precipitate.

3, Precipitate (iii): amorphous state (whether it will crys-

tallize in the future or not is not known).

4, Amorphous circular grain (will not crystallize in the

future).

5, Microcrystal (size 50 mm or less).

6, Crystal (i): needle crystal or plate crystal.

7, Crystal (ii): cluster of crystals.

8, Crystal (iii): single crystal (0.05–0.2 mm).

9, Crystal (iv): single crystal (>0.2 mm).

The reason the precipitate state is subdivided is that we want

to monitor tendencies in the growth of precipitates. It is

difficult even for experts to evaluate a good or bad precipitate.

Therefore, we accumulate in-depth growth records and make

a database of them so that trends can be shown. The reason

the crystalline state is subdivided is because how they should

be treated changes according to their shape. For example,

single crystals can be used in X-ray analysis without any

change, while a cluster of crystals needs to be separated out

before analysis and very thin needle crystals and plate crystals

may not be usable for analysis.

Although our ultimate goal is to realise a totally automated

evaluation system for the ten categories, we attempt to eval-

uate categories 0–3 as the first step in this article. The states

from class 0 to class 3 do not have shape, while those from 4 to

9 have some shape, for example; circular form, needle and

plate etc. Therefore, to evaluate samples in categories 0–3 and

4–9, we think that features based on image pattern and based

on shape should be effective, respectively. We attempt to

evaluate the first of these two sets of categories in this article.

Our target classification, which is a reclassification of the

RIKEN system, is as shown in Table 1. The groups from 4

(amorphous grain) to 9 (crystal iv) are put together into one

category, E, and we classify all samples into five categories

from A to E [A, clear; B, precipiate (i); C, precipitate (ii); D,

precipitate (iii); E, amorphous grain–crystal (iv)]. In the

RIKEN system, the samples in clear and precipitate stages

(0–3) occupy approximately 70% of all supervised samples, so

we consider that our target categorization is very effective for

categorization work. Group E includes non-crystalline objects

(group 4 of the RIKEN categorization) with crystalline

objects. The objects in group 4 have circular shape, so it may

be possible to classify them by measuring circularity. This

subject is not handled in this article and will be addressed in

future work.

3. Algorithm

The method presented here for evaluating the crystallization

growth states uses the processing flow shown in Fig. 3. This

processing flow is of a general form in the field of pattern

recognition. The method consists of ‘pre-processing’, ‘feature

extraction’ and ‘classification’. Generally, in the pre-

processing phase, denoising, normalization and so on are

performed on input images. In feature extraction, the features
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Table 1
Listing of evaluation categories.

Categorization in this paper is into five groups from A to E. Categories A–D
correspond to from 0 to 3 of RIKEN’s scoring, respectively. Groups 4–9 are
put together as class E.

RIKEN evaluation categories Evaluation categories in this paper

0, clear A
1, precipitate (i) B
2, precipitate (ii) C
3, precipitate (iii) D
4, amorphous grain E
5, microcrystal
6, crystal (i)
7, crystal (ii)
8, crystal (iii)
9, crystal (iv)

Figure 2
Ten categories for evaluation set by RIKEN. 0, clear; 1, precipitate (i); 2,
precipitate (ii); 3, precipitate (iii); 4, amorphous grain; 5, microcrystal; 6,
crystal (i); 7, crystal (ii); 8, crystal (iii); 9, crystal (iv). (These images are a
part of the well in the full drop images.)

Figure 3
The processing flow of the method presented here. The method consists
of pre-processing, feature extraction and classification.



used for classification are extracted from the original

images, which contain a great deal of information. In the

classification process, the input images are classified using

these features.

The details of the pre-processing, feature-extraction process

and classification process of this method are described below.

3.1. Pre-processing

Before the feature-extraction process, some pre-processing

steps are carried out. Fig. 4 indicates the schematic flow of the

pre-processing. The original images (Fig. 4a) are photo-

graphed by TERA using a microscope at 40-fold magnifica-

tion. The image size is 1392 � 1040 pixels. The number of

utilized images totalled 874.

Initially, the original colour images are transformed into

256-level greyscale images (Fig. 4b), because colour informa-

tion of images is not utilized in this method.

Next, a portion of the original image (Fig. 4c) is manually

extracted from inside the well. The processing object in this

study is assumed to be inside the well only. The extraction size

is 150 � 150 pixels, which is determined by considering the

approximate average size of the microcrystals and crystals in

the original images.

Finally, the extracted image is

differentiated with a Sobel first-order

differential filter (Fig. 4d). This process

highlights the characteristic pattern of

the image. Both differentiated (Fig. 4d)

and non-differentiated (Fig. 4c) images

are utilized in this method.

3.2. Feature extraction using texture
analysis

In computational image analysis,

‘texture analysis’, ‘smooth’, ‘sharpen’

and ‘edge detect/enhance’ are often

utilized to quantify images (Takagi &

Shimoda, 1991). In the method

presented here, we decided to intro-

duce texture analysis (Haralick et al.,

1973), which quantifies the array of

greyscale values of each pixel in an

image, to extract features from the

crystallization images. Spraggon et al.

(2002) have already used texture

analysis to investigate crystallization

trials. They used five texture features

and six edge features, whereas we have

used 14 texture features. Additionally,

there are differences in target classifi-

cation, the size of processed area and

the classification method between the

two methods.

Texture-feature values are calculated

by using a grey-level co->occurrence

matrix. Fig. 5 shows the algorithm used
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Figure 5
Algorithm of deriving the grey-level co-occurrence matrix. Texture-feature values are calculated by
using a grey-level co-occurrence matrix [P� in (b)]. (a) Each element of the matrix expresses the
probability that the greyscale value of one pixel is i and the greyscale value of another pixel located r
pixels away in direction � from the former pixel is j. In this article, r = 1 and � = 0, 45, 90, 135� are
used.

Table 2
Listing of extracted feature values.

Haralick et al. (1973) defined the 14 feature values. These are calculated by
using co-occurrence matrix P, where Px(i) =

P
j Pði; jÞ, Py(j) =

P
i Pði; jÞ,

Px+y(k) =
P

i

P
j Pði; jÞ, Px�y(k) =

P
i

P
j Pði; jÞ, �x ¼

P
i iPxðiÞ, �y =

P
j jPyðjÞ,

�2
x ¼

P
iði� �xÞ

2PxðiÞ, �2
y ¼

P
jðj� �yÞ

2PyðjÞ, HXY = �
P

i

P
j Pði; jÞ

� log Pði; jÞ, HX = �
P

i PxðiÞ log PxðiÞ, HY = �
P

j PyðjÞ log PyðjÞ, HXY1 =
�
P

i

P
j Pði; jÞ log½PxðiÞPyðjÞ�, HXY2 = �

P
i

P
j PxðiÞPyðjÞ log½PxðiÞPyðjÞ� and

Q(i, j) =
P

k Pði; kÞPðk; jÞ=PxðiÞPyðjÞ:

No. Texture-feature values

1 Angular second moment
P

i

P
j P2ði; jÞ

2 Contrast
P

k k2Px�yðkÞ
3 Correlation

P
i

P
j ijPði; jÞ � �x�y=�x�y

4 Sum of square variance
P

i

P
jði� �xÞ

2Pði; jÞ
5 Inverse difference moment

P
i

P
j Pði; jÞ=½1þ ði� jÞ2�

6 Sum average
P

k kPxþyðkÞ
7 Sum variance

P
k½k�

P
l lPxþyðlÞ�

2PxþyðkÞ
8 Sum entropy �

P
k PxþyðkÞ log PxþyðkÞ

9 Entropy �
P

i

P
j Pði; jÞ log Pði; jÞ

10 Difference variance
P

k½k�
P

k kPx�yðkÞ�
2Px�yðkÞ

11 Difference entropy �
P

k Px�yðkÞ log Px�yðkÞ
12 Information measure of

correlation 1
HXY �HXY1=maxðHX;HYÞ

13 Information measure of
correlation 2

f1� exp½�2:0ðHXY2�HXYÞ�g1=2

14 Maximal correlation
coefficient

(second biggest eigenvalue of Q)1/2

Figure 4
Pre-processing sequence. (a) Original image; the image size is 1392 � 1040 pixels. (b) 256-level
greyscale image. (c) A portion of the original image; the image size is 150 � 150 pixels. (d)
Differentiated image.



to derive the matrix. Each element of

the matrix P(i, j) in Fig. 5(b) expresses

the probability that the greyscale value

of one pixel is i and the greyscale value

of another pixel located r pixels away

in direction � from the former pixel

is j (Fig. 5a), where the displacement

between two pixels is denoted � = (r, �).

The distance between pixels r used to

calculate the co-occurrence matrices is

1 and the direction � is 0, 45, 90, 135�.

The four directions correspond to

horizontal, vertical and the two

diagonals. If nothing is done, the

features are calculated anisotropically. However, the crystal-

lization growth states are not anisotropic, so we take the

average of the results calculated using the four directions. By

using the matrix P�, 14 texture features are calculated as

shown in Table 2.

3.3. Classification using linear discriminant analysis

In previous studies on crystal image analysis, several clas-

sifiers have been used; for example, a self-organizing neural

net (Spraggon et al., 2002), C5.0 (Bern et al., 2004), linear

discriminant analysis (LDA; Cumbaa et al., 2003) and Bayes

theorem (Wilson, 2002). In this study, LDA, which is one of

the standard techniques of multivariate analysis, is used to

classify the feature vector.

LDA (Fisher, 1936) computes a linear discriminant function

which divides the feature space into two groups. A discrimi-

nant space is constructed from the linear transformation

gðuÞ ¼ ATuþ a0;

where A is a coefficient matrix, u is a texture-feature vector

and a0 is a constant involving A. The coefficient matrix A is

computed so that the discriminant

criterion

J�ðAÞ ¼
AT�BA

AT�WA

may be maximized, where �B and �W

are the between-class covariance matrix

and within-class covariance matrix,

respectively. To classify a new input

vector, we compute g(u) and determine

which class it belongs to depending on

its sign (Fig. 6).

Our target categorization is five

classes from A to E. In order to realise

this categorization, we apply the LDA

for two classes step by step. We compute

a total of four linear discriminant func-

tions: g1, g2, g3, g4. The grouping and the

sequence of the discrimination process

were decided as shown in Fig. 7 by the

result of repetition of basic experiments.
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Figure 6
The linear discriminant function g(u) divides the feature space into two
groups. A discriminant space is constructed from the linear transforma-
tion g(u) = ATu + a0. Input data are classified depending on their sign.

Figure 7
The discrimination procedure, consisting of two steps. In the first step, the input data is classified
into A/B, C/D or E using the functions g1 and g2. In the second step, the data is classified into
A, B, C or D using the functions g3 and g4.

Table 3
Results of classification.

The results by the method presented here (‘automatic classification’) are compared with the results by an
expert (‘manual classification’). The accuracy are class A, 98.1%; class B, 80.3%; class C, 82.8%; class D,
85.4%; class E, 93.9%. The overall accuracy is 90.6%.

Automatic classification

Total A B C D E F Accuracy (%)

Manual classification
A 53 52 0 1 (1.9%) 0 0 0 98.10
B 71 3 (4.2%) 57 10 (14.1%) 0 1 (1.4%) 0 80.30
C 29 0 1 (3.4%) 24 2 (6.9%) 2 (6.9%) 0 82.80
D 41 0 0 1 (2.4%) 35 5 (12.2%) 0 85.40
E 245 0 0 2 (0.8%) 11 (4.5%) 230 2 (0.8%) 93.90



When the functions g1, g2 and g4 are derived, the texture-

feature values calculated from differentiated images are used.

In case of the other function g3, the feature values were

calculated from non-differentiated images.
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Figure 8
Results of evaluating the accuracy of discrimination for each feature combination. The number of all combination patterns is 16 383, but only the highest
accuracy for each number of selections was plotted.

Figure 9
The frequencies of the feature No. being a constituent part of the combinations taking the highest accuracy were graphed by histograms. (a), (b), (c) and
(d) are the results for the classification steps g1, g2, g3 and g4, respectively.



4. Results and discussion

The data set used in this study contains 874 images that were

annotated by a human expert at RIKEN. The images were

obtained with RIKEN’s TERA system. The number of images

in each category is A (clear), 102 (11.6%); B [precipitate (i)],

116 (13.2%); C [precipitate (ii)], 78 (8.9%), D [precipitate

(iii)], 90 (10.2%) and E (amorphous grain, microcrystal,

crystal), 488 (55.8%). Category E contains over five times

more images than any other category because the images were

acquired to maintain a roughly constant number from each of

the ten categorizations set by RIKEN. Of the complete 874

images, 435 (A, 49; B, 45; C, 49; D, 49; E, 243) images were

used as a training set and 439 (A, 53; B, 71; C, 29; D, 41; E, 245)

were used as a test set. Training images in which artifacts

appeared in the drop were obtained in advance. The evalua-

tion result obtained by using the test set is shown in Table 3.

We compared the results obtained using the classification

method presented here (‘automatic classification’ in Table 3)

with the results by a human expert at RIKEN (‘manual clas-

sification’ in Table 3) and calculated the concordance rates by

the expression (accuracy) = (number of images classified

correctly)/(total number) � 100, where class F in Table 3 was

for the samples that were not categorized into any other

classes (A–E). The accuracies were class A, 98.1%; class B,

80.3%; class C, 82.8%; class D, 85.4%; class E, 93.9%. 90.6% of

the images were classified into the same category as manually

classified by an expert.

We confirmed that our proposed method is useful for

detailed classification of the samples into the categories clear

and precipitate. At the present time, human experts judge the

samples depending on their empirical knowledge. Individual

experts may sometimes make different judgements. The

method presented here will establish the numerical criteria

between each category of clear and precipitate and overcome

this problem.

Next, we discuss which features are most effective in the

classification.

Although we used the all 14 kinds of texture features fk

(k = 1, 2, . . . , 14) in this study, it is very important for future

research to clarify which features are most effective in each

classification step (g1, g2, g3, g4). We then evaluate the accuracy

of discrimination for each combination of the features. The

number of combinations when i features are selected from 14

features is denoted by Ci. The number of all combination

patterns
P

Ci (i = 1, 2, 3, . . . , 14) is 16 383 (for instance, when

selecting one or 13 features from the 14 features the combi-

nation numbers C1 and C13 are 14 and when selecting two or

12 features the combination numbers C2 and C12 are 91). We

calculated the accuracies ei
j for all patterns (i = 1, 2, . . . , 14;

j = 1, . . . , Ci), but in order to make the graphs easily viewable,

only the highest accuracy maxjðe
i
jÞ taken in each of the number

of selections i were plotted (Fig. 8). The figures show that the

evaluating accuracies are not dependent on the number of

selections in any classification step. Next, only the combina-

tions that took the highest accuracy maxjðe
i
jÞ for each selection

number i (points on the graphs in Fig. 8) were covered and the

frequencies of the features that were a constituent part of

them were graphed by the kind of feature fk (k = 1, 2, . . . , 14)

by histograms (Fig. 9). The histogram horizontal axis corre-

sponds to feature No. k in Table 2. The combinations that took

the highest accuracy for each selection number is not neces-

sarily one and sometimes multiple combinations take the

highest accuracy. As shown in Fig. 9, the features f10 (differ-

ence variance) and f13 (information measure of correlation 2)

are most effective features in the classification step of g1. In a

similar way, the features f5 (inverse difference moment) and f9

(entropy), the feature f6 (sum average) and the features f3

(correlation), f12 (information measure of correlation 1) and

f13 (information measure of correlation 2) are most effective in

the discrimination of g2, g3 and g4, respectively.

Finally, the mis-categorized images are described. From the

experimental results, we thought that the mis-classification of

the images belonging to classes A, B, C and D may decrease if

the number of training data were increased. One of the images

belonging to class E resulted in missing crystals, which would

not be affected if more training data were added. Examples of
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Figure 10
Examples of mis-categorized images belonging to class E. (a) The
precipitated crystals are very thin. (b) There are microcrystals that have
microscopic linear pattern and angles in the images. (c) The crystal-
lization solution weaves precipitate with crystals.



mis-categorized images belonging to class E are shown in

Fig. 10. The main characteristics of these images can be

summarized by the following three points.

(i) The precipitated crystals were very thin, which caused

some crystals to be missed (Fig. 10a).

(ii) Despite the microcrystals having microscopic linear

patterns and angles, these were overlooked. The method

presented here extracts features based on only the array of

pixel value, so cannot extract features related to their shape at

this time (Fig. 10b).

(iii) The crystallization solution had precipitate mixed in

with the crystals. We thought that the precipitate reflected

strongly and caused the crystal to be missed (Fig. 10c).

Considering these points, the method should be refined in our

future work.

5. Summary

In this paper, a method for classifying protein crystallization

states based on texture information derived from greyscale

images has been presented. The method presented here clas-

sifies the images into five groups which consisted of mainly

clear or precipitate outcomes. The images taken by the auto-

mated crystallizing system TERA are used and a texture-

analysis method is utilized to extract feature values from each

image. Linear discriminant analysis is utilized step by step to

classify the samples into five groups. To evaluate the perfor-

mance of the method presented here, the results annotated by

our method are compared with the results of a human expert

in RIKEN. As a result, although there are a few mis-classifi-

cations, 90.6% of the images were automatically classified as

manually classified by an expert.

In the method presented here we process part of the inside

well in the original image, but we will try to extend our method

in our future work by treating plural parts of the image and

processing them comprehensively. If this capability can be

realised, images including several crystallization categories

will be able to be evaluated. Moreover, we will attempt more

detailed classifications by applying contour-extraction

methods and so on.

The authors thank Miss Maki Kumei, Mr Nobuo Okazaki,

Mr Yuki Nakamura and Mr Tomoyuki Tanaka (RIKEN

Harima Institute) for supplying the protein sample images and

for their useful advice.
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